Multivariate Regression with Gross Errors on Manifold-valued Data

نویسندگان

  • Xiaowei Zhang
  • Xudong Shi
  • Yu Sun
  • Li Cheng
چکیده

We consider the topic of multivariate regression on manifold-valued output, that is, for a multivariate observation, its output response lies on a manifold. Moreover, we propose a new regression model to deal with the presence of grossly corrupted manifold-valued responses, a bottleneck issue commonly encountered in practical scenarios. Our model first takes a correction step on the grossly corrupted responses via geodesic curves on the manifold, then performs multivariate linear regression on the corrected data. This results in a nonconvex and nonsmooth optimization problem on Riemannian manifolds. To this end, we propose a dedicated approach named PALMR, by utilizing and extending the proximal alternating linearized minimization techniques for optimization problems on Euclidean spaces. Theoretically, we investigate its convergence property, where it is shown to converge to a critical point under mild conditions. Empirically, we test our model on both synthetic and real diffusion tensor imaging data, and show that our model outperforms other multivariate regression models when manifold-valued responses contain gross errors, and is effective in identifying

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Nonparametric Regression with Metric-Space Valued Output

Motivated by recent developments in manifold-valued regression we propose a family of nonparametric kernel-smoothing estimators with metric-space valued output including several robust versions. Depending on the choice of the output space and the metric the estimator reduces to partially well-known procedures for multi-class classification, multivariate regression in Euclidean space, regression...

متن کامل

Multiple Fuzzy Regression Model for Fuzzy Input-Output Data

A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...

متن کامل

Manifold-valued Dirichlet Processes

Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined locally for most cases - this makes it hard to design parametric models globally on smooth manifolds. Thus, most (manifold specific) parametric m...

متن کامل

Multivariate Multilevel Estimates of Shiraz infants Gross-motor Milestones Achievement Age

A two-yers longitudinal study waz conducted in 1996.the data are letated to a cohort of 317 healthy neonated(164 girls and 153 boys) randomly selected in june 1996 from the city of shiraz followed from birth to two years of age.Firstly,logistic regression model and HRY (Healy-Rashash-Yang)method were used on ten selected milestones separately.secondly, we use an auto-regressive multivariate mul...

متن کامل

Smoothness of interpolatory multivariate subdivision in Lie groups

Nonlinear subdivision schemes that operate on manifolds are of use whenever manifold valued data have to be processed in a multiscale fashion. This paper considers the case where the manifold is a Lie group and the nonlinear subdivision schemes are derived from linear interpolatory ones by the so-called log-exp analogy. The main result of the paper is that a multivariate interpolatory Lie group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.08772  شماره 

صفحات  -

تاریخ انتشار 2017